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ABSTRACT

An algorithm is described for determining the optimal solution of

parametric linear and quadratic programming problems as an explicit piece-

wise linear function of the parameter. Each linear function is uniquely

determined by an appropriate subset of active constraints. For every crit-

ical value of the parameter a new subset has to be determined. A simple
rule is civen for adding and deleting constraints from this subset.
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SIGNIFICANCE AND EXPLANATION

In many applications of linear and quadratic programming it is

necessary to obtain an optimal solution for more than one set of input

data. In particular, if the right hand sides of the constraints Ax b

can be interpreted as capacities, it might be useful to study the behavior

of the optimal solution if b is replaced by c + tp, where t is a

parameter which varies in some intervall, say [t, . Similarly, if the

coefficients of the objective function c'x are prices, it is sometimes

desired to compute the optimal solution for all objective functions of the

form (c + tq)' x for t E [t, ti

Parametric problems of this type have the following basic property.

There are critical values t = to < tI < ... < t : t such that the

optimal solution is a linear function of t for t f t tj+ I . This

linear function can be computed from a linear system of equations which

is determined by a certain set of active constraints. For each critical

value of t this set of active constraints changes.

It can happen that for some critical values of t the new set of

active constraints differs from the previous one by several constraints.

In this case determination of the correct set can he tedious. This diffi-

culty can be overcome by a simnle selection rule which results in a finite

number of intermediate sets which differ from each other by exactly one

constraint. Therefore, the problem reduces to the simple case of con-

secutive sets of active constraints which are obtained from each other by

adding or deletinq or exchanging exactly one constraint.-------

The responsibility for the wording and views expressed in this doscripti\

summary lies with MRC, and not with the author of this report.



ON PARAMETRIC LINEAR AND QUADRATIC

PROGRAMMING PROBLEMS

Klaus Ritter

1. Introduction

In practice it is often important to study the behaviour of the opti-

mal solution of a linear or nonlinear programming problem if some of the

data change. In this paper we consider linear und convex quadratic minimiza-

tion problems with the property that the right hand side of the constraints

and/or the linear part of the objective function depend linearly on a para-

meter t which varies in a certain intervall. It is known [31 that in these

cases the optimal solution is a piecewise linear function of the parameter.

There is a finite number of critical values of the parameter for which the

representation of the optimal solution as a function of t changes. These

critical values are characterized by the fact that the set of constraints,

active at the optimal solution changes. In a renular case when exactly one

active constraint becomes inactive or exactly one inactive constraint be-

comes active it is not difficult to find the new representation of the

optimal solution as a function of t . However, in a deqenerate situation

where for a critical value t. of the parameter several constraints be-

come newly active and/or several multipliers become zero, it may be tedious

to find the correct set of constraints which determine the optimal solution

for t > t.

It is the purnose of this paper to describe a nethod which can be used

to overcome these difficulties. For every value of the parameter for which

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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the given problem has an optimal solution, the Kuhn-Tucker-conditions

(see e.g. [2]) and an appropriately chosen set of constraints can be used

to determine the optimal as a function of the parameter by solving a linear

system of equations. For a regular critical value of t the selected set

of constraints is changed in one of the following ways. Either a constraint

is added to the set or a constraint is deleted from the set or both. In a

degenerate case it could be necessary to repeat this procedure several times

before the correct set of constraints is obtained. In order to avoid cycling

the selection of the constraint that enters or leaves the considered set

has to be made with some caution. It is shown that cycling does not occur

if the following rules are used. First, adding a constraint to the selected

set has priority over deleting a constraint from the set. Second, if therE

are several candidates for entering or leaving the set in each case the

one with the smallest index will be chosen. The advantage of this method

is that recular and degenerated critical values of t are treated in the

same way. The only difference is that in the degenerate case more than one

change of the selected set of constraints could be necessary.

In the following section we give a precise statement of the problem

and establish some preliminary results. In Section 3 basic nroperties of

parametric quadratic programming problems and their relation to the proposed

method are given. In the final section an alorithm is described for compu-

ting the optimal solution as an explicit function of the parameter. It is

shown that it terminates after a finite number of iterations.

2. Formulation of the problem and preliminary results

Let c , q, and x be n-dimensional column vectors and let A and

A' h(aI .. ,am , ' ((b) 1  (b)m)

bce an (n,n)-vlatrix and an rn-dimensional column vector, resnecti.i,,. Further-

more, assume that C is a symmetric positive semi-definite (n,n)-matrix. N4e

confidec the prcblem of determining the optimal solution to

2-



mn (c +tq) X + xC Cx A x :5 b + t o

as an explicit function of the parameter t for all values of t with

t _< t S t.

If C = 0 , then the parametric quadratic programming problem (2.1) reduces

to a parametric linear programming problem.

Because C is assumed to be positive semidefinite it follows from the

Kuhn-Tucker-Theorem (see e.g. (21), that x is an optimal solution to (2.1)

if and only if there is a vector u E Em  such that

Cx + A'u = -(c + tq)

Ax _ b + tp (2.2)

u'(Ax-b-tp) = 0 , u 0

Treughout this paper we assume that

rank (C,A') = n . (2.3)

Th2 purpose of this assumption is to guarantee that if (2.1) has an optimal

solution for some t it also has an optimal solution, say, which is the

unique optimal solution in the intersection of the constraints that are active

at x . This fact is established in the following lemma.

Lemma 1

If rank (C,A') = n and (2.1) has an optimal solution for some t

then there is a set I c ;1,2,..., m} and an optimal solution x of

(2.1) such that

i) The vectors ai, i E I, are linearly independent

ii) x is the unique optimal solution to the problem

min{(c+tq)'x + x'Cx a' x = (b) i + t(p) i , i E I

Proof:

For t = t let x. = X0 (t) he any ootimal solution to (2.1). refine the set

10 c , ..... m, such t t I if and only if

-3-



a (b)i + t(P)i

If x0  is the unique optimal solution to the problem

min (c+tq)'x + x'Cx I aix = (b)i + t(p) i E 1 (2.4)

it suffices to set x = Xo and to choose any maximal subset I a I such

that the vectors ai , i E I , are linearly independent.

Now suppose that X0 * xo is an optimal solution to (2.1). Set

s = x0 - Xo and

Q(x-t) = (c+tq)'x + I x' Cx

Then it follows from the convexity of Q(x; t) that

Q(xo + S;t) :Q(xo ;t) for all . (2.5)

This implies that s'Cs = 0 and, because C is positive-semidefinite,

Cs = 0. Therefore, it follows from (2.3) and the relations

ai s = 0, i E 10 (2.6)

that there is i i 1 10, such that ai s * 0. Hence we deduce from

(2.5) and (2.6) that, for some u 0

x X0 + C7 s

is an optimal solution to (2.1) with

a xI  (b)i + P) , i

where 10 c I and I , 11 . RepeatinQ this argument if necessary we

obtain in optimal solution x to (2.1) and a set I c {!,2,...,m} such

that is the only optimal solution to (2.1) which satisfies the equations

ai x = (b)i + i(P)i , i c I . (2.7)

Setting x = x and choosing any maxim'al subset I I such that the

vectors ai ' i E I , are linearly independent completes the proof of the

l emma.

-4-



In the following sections we will associate with each t [ t,

for which (2.1) has an optimal solution a matrix A and an optimal solution

with the properties specified in the above lemma. Let

a' x (b) + t(p) (2.8)

be any constraint which for t : t is active at the optimal solution x

Then this constraint is said to be a primary active constraint if a 1 is a

column of A'. If a is not a column of A' then (2.4) is referred toV

as a secondary active constraint.

For later reference we prove the following lemma.

Lemma 2

The matrix

1 = ( '

A , 0

is nonsingular if and only if the following conditions are satisfied

i) The columns of A' are linearly independent.

ii) x'Cx > 0 for every x * 0 with Ax= 0

Proof:

First assume that the conditions of the lenmma are satisfied. Let (x,y) be

any solution of the equations

C x + A'y 0

Ax - 0

Then x'Cx = - 'Ax 0 implies x = 0 . Thus A'y = 0 and, therefore,

= 0 . This shows that M is nonsingular.

If the columns of A' are linearly dependent it follows immediately

that M is singular. Finally, if there is x * 0 with x'Cx = 0 and

Ax = 0 , then Cx = 0 and (x, 0) is a solution of the equations. Hence,

> is sinnular.



3. Basic properties of parametric quadratic and linear programming problems

For t = t. let x. = x.(t) be an optimal solution to (2.1) for which

assumption (2.3) is satisfied. Re-numbering constraints if necessary and

using Lemma I we can assume that

a1 x : (b)i  + tj(p) i  , i=1,...,

a' xj < (b)i + tj(p) i , i=o+1,...,m

and x, is the unique optimal solution to

min . (c+tjq)' x + I x'Cx I A x = b + tjpj }

where, for some v ,5

A'. W ,.' = ((b)1 , .. ,(b),) , ' ((P)j,.""(P),)

( .j .. , 3 ,.

and the columns of A'. are linearly independent.i

Let u= u.(tj) - 0 be such that

Cxj(tj) + A' uj(t,) = - (c+tjq)

with (uj) i  0 for i=,-+11...,m . Then the optimality conditions (2.2) can

be written in the form

Cx.(t) + A, v.(t) = - (c+tq) (J vj((3.1)

A xj(t) b.+tp.

a x.(t) _5 (b) i  + t(n) i , i=\,+l,...,m (3.2)

v (t) t 0 , (3.3)

v.(t) E E" and (v (t)) i  = (uj(t)) i , i=1,..., ,

6



Since by Lemma 2,

Mt = (

is nonsingular, the inverse matrix

MIj, M2jIM.l =(2 ;
i M 3j, M4j

exists.

Setting

hlj= - M1j(c+tjq) + M2j(b j +t j p j ) , h2j = - Mljq + M2jpj

glj = - M3j(c+tjq) + M4j(bj+tjPj) ' g2j = - M3jq 
+ M4 jPj

we obtain from (3.1) the relations

xj(t) - Mlj(c+tq) + M2j(b j +t pj ) (3.4)

= h1j + (t-tj) h2i

and

v i(t) M M3i(c +tq) + PI4i (b + t pj) (3.5)

: g1i + (t-t) Onj

Substituting x.(t) into (3.2) we have, for i=v+l,...,m , the inequality

at hlj + (t-tj) a' h2j < (b)i + tj(p) i + (t-tj)(P)i (3.6)

or
(t- tj)(at h2 j-(p)i) (b)i + t.(p) i  - a' h, .

3 2 i(P)
Therefore, xi(t) is a feasible solution for all t ! 0 for which these

inequalities are satisfied.

Because hlj = x (tj) , it follr,.s from (3.2) that

-7-



(b)i + tj(p) i  - a' h,, > 0 , i=v+l,...,m (3.7)

If (at h2j - P 0 , i:v+1,...,m , set t : , otherwise set

* r (b)i + t (p) i  -at hj ,
tj+1 -t. at h2h " (P)i >0 (3.8)

aI h2j - (P)i

and let k be the smallest index for which the minimum is attained.

Because of (3.7) we have t+ z_ t. . Define the set Ij of critical
indices as follows

I { (b)i +tj(p)i -a,'hi j  0 and a! h2 j (p)i>0}

Clearly, tj+ > t if and only if Ilj .

If I. * 0 , then x.(t) , as defined by (3.4), is not feasible for

any t > t. Thus at least one of the secondary active constraints must be-

come a primary active constraint. We choose the constraint with index

k = {in i i E Ij (3.9)

The computation of the new matrix Mj+ 1  is discussed below.

Suppose now that I1j 0 and observe that by (3.3) we have

v.(tj) = j > 0 . (3.10)

If -q2 j 0 then vj(t) > 0 for all t tj . In this case we set
tj+= ; otherwise set

j+1 - t mn ({2j)i < 0 (3.11)j~l tq : i i2j) i

and let 1 be the smallest index for which the minimum is attained. Because of

(3.10), t j+ > t.j With

I"j = (gj)i = 0 and ()i <

it follows immeditely that tj+1 > t if and only 1f Lj =

-3-



If 12j , then x.(t) is not optimal for any t > t. Thus at

least one of the primary active constraints must become a secondary active

constraint. We choose the constraint with index

= min i i E I2j ( (3.12)

The new matrix j+I is derived below.

Set 1j= 0 . In order for x.(t) to be an optimal solution t: (2.1),

both the inequalities (3.6) and (3.5) have to be satisfied. Thus we set

t = min tj ' t

Then the following lemma holds.

Lemma 3

There is tj+ tj such that

i) x.(t) = hl. + (t- t) h. is an optimal solution to (?.I)
3 'j 2j
for all t with t <:: t ?< tj+ 1

ii) There is no t > t+ such that xi(t) is an ontimal so-

lution to (2.1) for t = t

iii) t 4+ >ti if and only if Ilj U I 2

We now discuss the computation of the new matrix

Case 1:

Either Il * o = 1 0j and tj1 = in either case

the constraint

a x !< (b)k + t(p)k (3.13)

has to be added to the set of primary active constrints. i"re ire tv:o cases

dependinq on whether ak is an element of span {a11... ,a or not. In

order to decide which case applies we consider the equations

-9 -



Cw + A z z a

Sk

Aiw : 0,

from which we obtain

w = M11Jak z = M3 ak (3.14)

Clearly, ak E span { a1 ,... ,a I if and only if w : 0

First assume that ak span {a1 ,...,a v } . In this case we set

A'J+1 (A , ak)

and (A A 1,

j+I =,Aj+ 0

Since the columns of A. are linearly independent it follows from Lemma 2
J+1

that ; ±1 is nonsingular.

Next assume that w = 0 . Since in this case the vectors aI,... ,a ,ak
are linearly dependent we have to determine a constraint

x (b) t(p)

4 n the set, of Primary active constraints which will be replaced by (3.13).

This c:an De done by using the vector z as defined by (3.14). If z _< 0 ,

it follows from Lemma 6 in the next section that (2.1) has no feasible solu-

ticn for t > t, . If z has at least one positive component let the set
J

be defined such that i E 13j if and only if

(__j)i = min ( (Z) > 0 }
(z)i "( )

arid ot

1 = min i i E I3j

rt is not difficult to verify that with this choice of 1 the nradients

of the fiew set of primary active constraints are linearly independent and that

0 sucs that

- 10 -
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- (c+tjq -Cx(tj)) i=1 ai + Ak ak

i *1

Furthermore, if Ilj * 0 it follows from Lemma 7 that the above rules for

choosing k and 1 ensure the existence of an j, > j  such that 11j I = 0

Case 2:

Either Iij = 0 12j * 0 or I = 12j = 0 and tj+1 = +1 < tj+1"

In either case the constraint

aj x .< (b) l + t(q)

has to be deleted from the set of primary active constraints. If C is not

positive definite in the set

T = {xIa x - 0 , i=l,...,v , i * 1 } (3.15)

or if there are secondary active constraints at xj(tj) it may be necessary

to add a constraint

a x ! (b)k + t(q)k

to the set of primary active constraints. In order to decide this we denote

the l-th column of M,. by sI and the element in the l-th row and l-th

column of M4j by w . Then it follows from Lemma 4 that C is positive

definite in the set (3.15) if and only if w < 0 . Furthermore, if C, < 0

then

x.(t) = (t-tj)sl = hij + (t-t.)(h2j-oSl) (3.16)

is the unique optimal solution to the problem

min (c+tq)'x + X'Cx I aC x = (b)i + t(r)i , i=1,. .. "v, i 1 }
(g2jl

where o= and n2  is the vector used in (3.5). If there are second-

ary active constraints at x.(tj) , . .) neeJ not be a feasible solution to

(2.1) for any t > tj Therefore, we define the set

I = i a'. s < 2 and ai hl (b) + t.(P)i I

-11



and, if 14j 0 the number

To  = minji E 14.
0 - a s I

If o !5 To ' then (3.16) will be a feasible solution to (2.1) for t > t

sufficiently small.

Therefore, if w < 0 and o < T no new primary active constraint is

needed. If w < 0 and o 0 : '- 0 then a secondary active constraint will

become a primary active constraint. Finally, if w 0 and 14j = 0 then

the problem

min (c+tq)'x + x'Cx a' x = (b)i + t(Pi) , , i * 1

has no optimal solution for t > tj (see the proof of Lemma 6). In this case

either (2.1) has no optimal solution for t > t or there is some -1 > 0

and some index k such that akSl< 0 ,

xj(tj) - TI S I

is an optimal solution to (2.1) and ckxj(tj) - saSl = (b)k + tJ(P)k

where T, and k are determined by inserting xj(tj) - -r s into the

inequalities

x ! (b), + t(p)i ,

which are not active at xj(tj) and computing the largest value of 'T for

which xj(tj) - Ts 1  is feasible. Details of this procedure are niven in

Step 3.3 of the algorithm described in the next section.

It follows from Lemma 9 that the above rules for chanqing the set of

primary active constraints ensure the existence of an j, > j such that

I, = , j+l, ... 1j , and 12v 0



4. An algorithm for solving parametric linear and quadratic programming

problems

In this section we describe an algorithm for computing the ootimal

solution to problem (2.1) as an explicit function of the parameter t

It is assumed that, for t = t , the algorithm starts with an optimal solu-

tion xo(t) to problem (2.1) which has the properties described in Lemma 2.1.

A general cycle of the algorithm consists of four steps. At the begin-

ning of the j-th cycle the following data are available:

1.3 MIj M2 ) , hlj , h2j , 91j , g2j , J(xj) and j
M3j M4j

Here vj denotes the number of primary active constraints. The elements

Otij of the index set J(xj) are positive integers and are defined in such a

way that cti = k if and only if the i-th column of the matrix A' is equal

to ak , the gradient of a primary active constraint. Then

M A. j A j , 0

ard

h ii- fc -j tq

g1j b b + tjpj

h2j/ /q

where bj and pj are appropriate subvectors of b and p , respectively.

In Step 1.1 and Sten 1.2 the critical sets 1,, and 1I are deter-

mined which contain the indices of secondary active constraints which are not

satisfied for t > tj and multipliers which are nenative for t > tj , re-

spectively. If both sets are empty Step 3.1 is used to compute the maximal

tj+I > tj such that

x.(t) = hl. + (t-tj) hj

- 13-



is an optimal solution to problem (2.1) for tj _ t < t+

In Step 2 it is determined whether ak , the gradient of the con-

straint that becomes a ne, primary active constraint, is linearly dependent

on the gradients of the present set of primary active constraints. If this

is the case then a constraint is selected which has to be deleted from the

set of primary active constraints.

In Step 3 a constraint a x < (b), +t(p)l is given which will be

dropped from the set of primary active constraints. If the problem

min (c+tq)'x + - x'C x a! x = (b)i + t(P)i , i E ) - {I}

has a unique optimal solution which satisfies the inequalities Ax < b + tp
for t > t+ I sufficiently small, then no new primary active constraint is

required; otherw,,ise a constraint is determined that will be added to the set

of primary active constraints.

In Steo 4, the matrices Aj+ I and M a computed.-1 I+ arecoptd

Next we give a detailed description of a general cycle of the algorithm.

Step 1

1.1 Define the set Ilj such that i E Ilj if and only if
(b)i + tj(;). - ai hij = 0 and a' h

31 2i (Pi3

If Il = 0 go to SteD 1.2; otherwise set

k = min { i I i E Il , tj+ t

and go to Step 2.

1.2 ?efine the set 1j such that i E I.j if and only if

.lj)i = 0 and (nj)i < 0

1If 12j = 0 go to Step 1.3; otherwise set

1 = min i E I,. , i+ t
and a' to S .

and Qo to Step 2.1.

- 14 -



1.3 If ah2j (p)i 
< 0 for i~l,...,m set t - t : , otherwise

I 2j > j+1 0set

- tj = mm r (b)i a: t (p)i. - a' hj j ~ .(p.0
j+1l - tj - min h - (p)i I g < > .12j

and let k be the smallest index for which the minimum is attained.

If 2i 0set Tj+ - t. otherwise set

tj+1 - = min {( 1  (g2j9i < 0}

and let 1 be the smallest index for which the minimum is attained.

Set

tj+1 = min tj+1 I  tj+1

and print
tj+1  hljandhj

If tj+ 1 >_ t stop; otherwise do the following. If tj+1 tj+1  go

to Step 2. If tj+ I = tj+ I < tj+ I  go to Step 3.1.

Step 2

Compute

w = MIj ak

If w * 0 go to Step 4.1, otherwise compute

z = lj ak

If z 5 0 stop with the message that the problem (2.1) has no feasible

solution for t > tj+ I  If z has at least one positive component

define the set 13j such that i E 13j if and only if

- mi (q1 ) (z) > 0}
(z)i  (z)

Set

1 = min { i I i E 1 3j}

ind io to Sten 4.3.

15-



Step 3

3.! Set s I = (M2j)I , (M4j)I, and

1 4j = {i a S <0 and a'h (b)i + t (p) i

If 14j = 0 and w = 0 , go to Step 3.3.

If 14j = 0 and w * 0 , go to Step 4.2.

If 14j 0 0 , compute

m (P)i a h2 i
t o : inal s 4

S1I

and let k be the smallest index for which the minimum is attained.

If T > 0 , go to Step 3.2; otherwise compute

w = MI ak

If w * 0 , go to Step 4.1; otherwise go to Step 4.3.

3.2 If * * 0 and (g2j)l < T , go to Step 4.2; otherwise go to Step 4.3.ci, 0

3.3 Set

I = I a s < 0 and a' h < (b)i + tj(p) i

If I5j = 0 , stop with the message that there is no optimal solution

for t > tj+ 1 . If 15j * 0 , compute

(b)i + tj(P)i- a h-i : min 1, i E
-a s I  15j

and set

{I EI 5j (b)i + tj(P)i - a hlj
- at s,

Compute

T2  mi n -a1 h 2  E I

a. s

and let k be the smallest index for which the minimum is attained. Go

to Step 4.3.

- 16-



Step 4

4. 1: Set v = \,j +1 and Jj+1 1,j+1' ,r jlil where

=i~ ,i i1. .. = tjl,~ k

Go to Step 4.4.

4.2: Set v =~ -v 1 and Jj~ =C i,j+1'..C ~cV. 1 ,j+1} where

1i,3+1 Oi+1~j \,-

Go to Step 4.4.

4.3: Set ,)j + 1 = ,iadJj+1 f'1 jl +1'*. .0 jlj hr

,,j+1 jwhere \)

=,~ k

n~o to Step 4.4.

4.4: Set

Va)

bl (\b 1 +. .(b) . 1

1,j+1'

3+1 (P)A..,P)

J+ ,j1

-17-



g2,j+l ( 3,j+1 M4,j+I bj+l + tj+ )Pj+i/

g2,j+1! M3 ,j+ 1  M4,j+/ -+1

92j~ M3,j+1 ' 4,j+1) ( j+l

Replace j with j+1 and go to Step I.I.

In the following we prove some lemmas which establish the basic prop-

erties of the algorithm. The first two lemmas are concerned with the exist-

ence of 1-
J

Lemma 4

Let s 1 ("'12j)l and (M4j)l I  be defined as in Step 3.1 of the

algorithm and assume that

x'Cx>0 for x*0, x E Y j a 0 , i E

i) Then

x'Cx >0 for x * n, xET = x aix = 0, iE - {I}

if and only if , < 0

ii) if < 0 set -0 = (92j)l /  " Then

x3(t) - .0 (t- tj+1) s1

is the unique optimal solution to the problem

min (c+ to)'x + x'C, a I x = (b) i + t(p) , i E (4.1)

Proof:

Set s 2 = (M4 j)I . Then

C s 0 A4ai = 0 is - rl

s sI = 1

- 18-



Thus
silC s~ I 5j A~ i 2 (s2)1 (M4j)11 I w (4.2)

Let x E T and x * 0 . Then there are A and y such that A'y = 0

and x = y + X s. Therefore,

x' Cx = y' Cy + 2 XsiCy + X2 s Csl (4.3)

y' Cy + A 2 s s I

because siCy - sAjy = 0 . Since s, E T , the first part of the lemma

follows from (4.2) and (4.3).

In order to prove the second part of the lemma we first observe that

al(x (t) - ao(t-tj+l)sl) =  (b)i + t(P) i , iJj - {l}

Furthermore,

Cx.(t) + A'. vj(t) = - (c+tq) (4.4)

with (vj(tj+l))l= 0 . Thus

C[x(t) - (t-tj+ 1 )sll + A[vj(t) + Oo(t-tj+1 )s 2 ] = - (c+tq) (4.5)

and

(v.(t) + ao(t-tj+l)S2) (v (tj+1)) 1 
+ [t-tj+1](g2j+GoS2)l

[ t-tj+ I( (g2j) + ':o(S2 ) 1 ) = 0 .

Therefore, it follows from (4.4), (4.5) and the Kuhn-Tucker-conditions that

xj(t) - To(t- tj+1 )sl is an optimal solution to (4.1). By the first part of

the lemma it is the unique optimal solution.

Lemma 5

If M is a nonsingular matrix, then every matrix

C a , 0j

determined by t1- il1orithm is nonsingular.

- 19 -



Proof:
Suppose that, for some I , '1. is nonsingular. Because of Lemma 2 we3

know that then the columns of A. are linearly independent and x'Cx > 0
for every x * 0 with

xT {x Ajx = 0}

Similarly, it follows from Lemma 2 that Mj+1  is nonsingular if the columns

of A41 are linearly independent and x'Cx > 0 for every x * 0 with

XE Tj+1  = {xIAj+ix = 0}

Without loss of generality we may assume that

A' (a ,. .,

First assume that Step 2 of the algorithm is used in the j-th cycle. Then

() ( MIj M2 ) ( ak): (M I j  ak\

SM3j ,M4j 0 M3j ak

and

Cw +Az = ak

If w 0 , then A+ : (al,...,a,a)
j+ (,. aak)

If w = 0 , then A. I  (al,...,al l~ak al+l,...,a) with (z), * 0

In both cases it follows immediately that the columns of A'+ are linearly

independent. Furthermore, x' Cx > 0 for every x * 0 with x E Tj+ 1

because Tj+ I c T .

Next assume that Step 3 of the aloorithm is used in the j-th cycle. If

A' : (aa ,a )j+l I" ' -ia +I"' " a,,,

then * 0 . The columns of A' are linearly idependent and it follows
J+1

f-om Lemma 4 that x' Cx > 0 for x * 0 , x E Tj+ If

A' (a
+ 1(a aI  ,ak,al+,... ,a )

then aks I < 0.

- 20 -



Since a' s 0 i:1, v , i * 1 , the columns of V are linearlyIic aiS " 'j+1 aelnal
independent. Furthermore, j

x E j x a i x = 0 , i=1,..., , 1

and x' Cx = 0 imply x = Xs for some N . Since T+I T n {xiakx =

and a sI < 0 the vector s, is not an element of Tj+ 1 . Thus x E Tj+ 1

and x * 0 imply x'Cx > 0.

The next lemma shows that the termination of the algorithm with Step 2

or 3 implies that tie given problem has no optimal solution for t > tj+ 1.

Lemma 6

i) If the algorithm terminates with Step 2 in the j-th cycle, then

the problem (2.1) has no feasible solution for any t > tj+*

ii) If the algorithm terminates with SteD 3 in the j-th cycle, then

the problem (2.1) has no optimal solution for any t > tj+ 1

Proof:

i) We have ak = A. z, z < 0 and, by the definition of k
k

ak hzj (b)k + tj+l(P)k a4 h2j > )k

Let t > t j+ I  and A. x _< b + tjpj + (t-tj) pj . Then

Aj (x- hIj - ( t- tj ) h~j
and

a - (t- tj) h2 ) > (b)k + tj P + (t-tj)(P)k

Therefore,
a, x = a (h,, (t- tj)h 2j ) + z ' Aj ( x - h j - (t - tj) h2j )

> Nb k - t j(p) k  + (t- tj)(p) k .

ii) 1.%'ithout loss of qererality we may assume that A; = 8,,) and 1=

By the definition of 1 we have

(vj(tj+l)),l 0 and (qj)l < 0



Furthermore, let s, and s, be defined as in the proof of Lemma 4. Then

siCs I  = - .= 0

Because C is positive semidefinite this implies C s, 0 . Thus for any

> ti+l 9 we have

s Cx (t) + sj Aj vj(t) = - sj(c+tq)

or
- sj(c+tq) = (vj(t))1 = (qlj)l + (t-tj+ 1 )(g 2 j) < 0

Furthermore, since 14j = 0 and 15j.= 0 it follows that a! sI > 0 for

Therefore, if for any t >tj+ I , there is a feasible solution

x , say, then

a! (x - sI) -< (b)i t (P)i for all c, _> 0

11"

(c+tq)' x + x'Cx - (c+ tq)'sl-- as o -o

The main difficulty in showing the finite termination of the algorithm

is to prove that for every j for which the union of the critical sets llj

and 2j is not the empty set there is some j, > 0 such that llJU 12i .

This is done in the following three lemmas.

Lemma 7

For every Jo with I 0 o there is j, > Jo with 1jI = 0

Proof:

There is a largest integer j 0 with

1 * 0 , J=Jo'jo + I  
.... J

and

ak span {a, i E J(xj*) }

,';here k is the index determined in Step 1.1 of the algorithm. Set j = j +

22-
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and let 0 be any matrix such that (A, D') is a nonsingular (n,n)-matrix

and every column of D' is orthogonal to all columns of A. . Define the
.3

set of integers I in such a way that i E I if and only if

a! x.(tj) = (b)i + tj(p) i  (4.6)

and

a i E span {ai Ii E J(xj)}. (4.7)

Finally choose any t > t. and consider the following linear programming
problem

max {(bj+tpj)' v + T ((b)i + t(P)i)xi}

iEI

subject to the constraints

Aj v + Dy + E a. .i - (c+tjq) - Cxj(tj)
J EI 1 3 3 .

v 0, 00, i E I

We will apply the simplex method with Bland's [1J minimum index rule to

this problem.

First we observe that (A ,D) is a basis matrix for this problem. The

corresponding basic solution is v v1 (tj) , y = 0 . In order to determine

the new basic variable we compute

x: D + t p)

and
Si (b)i + t(p)i - a' x, i E I

If > 0 for all i E I , then the current basic solution is optimal. If

at least one i is negative, then k 'Aill become the new basic variable,

where

k - m i i E I <  0 .(4.8)

Because x and x1 (t) are solutions to thn equations Aj x = b: + t r

we have Aj(x -xj(t)) T1s it follows from i,1.7) that

23-



i (b)i + t(p)i - at x.(t) , i E I (4.9)

Since xj(t) =hj + (t-tj)h2j we deduce from (4.6) and (4.9) that

ah2j - (p)i > 0 for every i E I with rxi < 0

Therefore, every i E I with ai < 0 is an element of the set Ili Since

by the definition of j , the index k determined in Step 1.1 of the

algorithm is an element of the set I , it is identical with the k selected

by (4.8).

In order to determine the basic variable that will leave the basis we

compute

fYj)' 
-1

Y2 = (A, D')- ak

From (4.7) we deduce that Y2 = 0 and yl = z , where z "3j ak is the

vector determined in Step 2.1 of the algorithm as part of the solution to the

equations

Cw + A'.z =aj ak

Aj w 0.

Definiog the set I such that i E I if and only if

(vj(tj))i = min (vj(tj))v I  z > 0

(z) i  z)

we obtain the index of the basic variable that will leave the basis as follows

1 m= { iij I i E I}

This index is the same as the one determined in Step 2 of the alcorithm.

The above results show that, for j = j + 1 , I1j = 0 if and only if

v = v(t) , y = 0 is an optimal basic solution to a linear maximization

problem. If I1j * 0 , then (A.+I , D') is the basis matrix obtained by

performing one iteration in the simplex method. The correspondinq basic

solution is optimal if and only if 12,j+l = 0 . Repeating this argument and
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observing that by Bland's rule the simplex methods determines on optimral

solution in a finite number of iterations we deduce that there is j,>
with I 1j1  0

Lemma 3

For every j I , 0 and 1 2i 0 imply I 1,j+1 =0

Proof:

Let sl (M2j), and s2 (M4j)l Then (s I2 satisfies the equations

C 1+ 2  = 0(4.10)

Aj si= e.

where (ej)j 0 , i * I , and (ej), = 1

Furthermore,

x.(t) =h.j + (t- t.)h.j v.i(t) q1. + (t j)2

are determined as the unique solution to the equations

C x + A' v =-(c + tq)

Without loss of generality we can assume that

V =(a 1,,a 2' ,a) and 1 =v

Then

X+(t) = hl9j~l + (t- -jh 9

is the unique solution to the equations

C x + A' v (c + (st q)

Aj+1 x + j+1 + j+1 4.1

where A'+ = aj. . .,_ or _ j ta,.,,a o j41 (a1,.. .al_,ak)

denendini on wJhich part of Step 3 of the alqorithm applies. Because 1 2i 0 we

have t,+ t.
p$1



Case 1:

I4j 0 and 'To = 0.

Since a '2, - (P)k = 0 , it follows that

ak xj(t) = (b)k + t(P)k + (t-tj)(P)k (4.12)

for all t.

If Mlj ak * 0 , then A+ I : (Aj ,ak) and it follows from (4.12) that

xj(t) , (vj(t), O)

is a solution to (4.11). Thus x,+l(t) = xj(t) . If i is the index of a

secondary active constraint, we have, therefore,

a h2,j+1 (P)i at h2j - (P)i < 0

i.e. Il,j+ 1  = 0 -

Now assume that M =j ak = 0. Then A'a ,a
.~ k A : '1  ad 0 and

a k A'. z with z = M2, ak Since (z)1 = z'A s = a'sl * 0 we can define

(glj 1

(gzj)i = - (z) (z)i, i=1,...,V-I

((z~ lI (glj)l
(glj)l-

(z) 1

(12j)i =, i=l,.. ., -i

(92j~l (gz)l
^(g2jl = ___

(z)l

Then

A+ vj (t) = A'. v.(t) , v.(t) = gl + (t-tj)_2j. (4.13)

Therefore, it follows from (4.12) and (4.13) that xj(t) , vj(t) is a solu-

tion to (4.11). Thus



xj+1(t )  :xjt) (4.14)

and I1,j+1 =

Case 2:

(14j = 0 and w * 0) or (14j 0 > 0 w * 0 , and

(g2j)l / w < T)

In this case we have A (a1,...,av_l) With

J+1 v1
(g .)l

Co 2= 1 W = (M4j)ll =(s2)

we have

(v.(t))l - 0(t-tj)(s2 )1  = (t-tj)((g 2j)l - ao(s2)l) = 0

Let vj(t) and S2 denote the vectors obtained from vj(t) and s2
respectively, by deleting the l-th component. Then

xj (t) - 0(t -tj)s I  , v (t) - o(t- tj)s 2

satisfy the equations (4.11). Indeed,

and

C [ xj(t) - ao(t- tj)s, I + Aj+ 1 [ vj(t) - Go(t- tj) s 2  
=

C xj(t) + ( 0(t -tj)A s2 + A'. vj(t) -o(t-tj) s2

C xj(t) + A. vj(t) = - (c+tq)

By Lemma 4 we have, therefore, xj+ 1(t) = xj(t) - ,o(t- tj)s I which implies

hl,j+1  h hj and h2,j+l = h2 i - 'oSl (4.15)

Furthermore, (q2j)l < 0 and

CO (s2) 1 : Aj s21  -s Cs I < 0 (4.16)

imply 0 (g2j)l / >
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Now let i be the index of any secondary active constraint. If

at s I _> 0 , then

a' h 2,j+- (p)i = a! h - (p)i- o at sI

_< at h2j -(P)i 
- 0

If a' s, < 0 , then i E 4j and

a' h (P)i a h2 -(p)i - a.

1 ( p ) i - a ' h 2  o)
= a s I  -, 1 G

a i s I

<5 at S1 (To -G O) <o0

Therefore, It1j+ 1 = 0

Case 31:

(I4j 0 To > 0 w w = 0) or (14j * , To > 0 , . * 0 , and

(g2j)l / W TO )

In this case A = (al,...,a._,a With the same arguments as in

3 k)

the previous section it can be shown that xj+l(t) = xj(t) - To(t-tj)sj , i.e.

h 'h and h - 0  i (4.17)
Shl'j+1 h h2,j+l = h2j _ To Sl (

Let i be the index of a secondary active constraint. If a' s, 2- 0 , then

a' h - (P) = ah - (P) -TO a s

i2,j+1 (Pi a 2j (~

<5a' h25 -

If a s I < 0, then i E 14 and

a 2,+- (P) = a! h2j -( - 0 a! Sl

- ( ( p ) i - a h25  ) 0.

a 8 s 2

Hence, I 1'j+l 
=

-28 -



Case 4:

S 14j = 0 and w = 0 In this case Step 3.3 of the algorithm applies
an

A +1 = (al,...,aV_1,ak) •

Because w = 0 the equality (4.16) implies siCs I = 0 which, for the positive

semidefinite matrix C , is equivalent to CsI  0 . Thus

Cxj(tj) = C [xj(tj) - -r1 sI

Furthermore, by the definition of T1  in Step 3.3 of the algorithm

a (xj(t) - ri sl) = (b)k + tj(P)k

Therefore, it is not difficult to show that

xj+1(t) = (t) - Tr 1s (t-tj) -2 s

vj+ 1(t) = vj(t) - (t-tj) T2 s2

is a solution to (4.11). Hence we have

hl'j+ I = hlj - Ti SI , h2,j+1 = h2j - T2 S1  (4.18)

Let i be the index of a secondary active constraint for x +l(tj+1)

If this constraint is also a secondary active constraint for xj(tj) , then

xj+1 (tj+1 ) = xj(tj) - T I S1  with TI > 0 . Thus tj+I = t implies

ai 0, i.e.
at h a h2j - (P)i < 0
i 2,j+ (P i 2

If the i-th constraint is not a secondary active constraint for xj(tj)

then i E 16j and
a t h a t h -- a ' s ,

h2,j+l (P)i = 2j 2 ai -2

(P_)i - at; h
= aa ss I

<0.
Therefore, Ij+ I =
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Lemma 9

For every j 0  with llj 0 0 and 12j 0 0 there is j, > Jo such

that

Ilj = 0 , j=jojo+1,...,Jl

12j * , j=jo,Jo+1,...,j 1-1, 12j = 0.

Proof:

If Ij = 0 and I2j * 0 then Step 1.2 and Step 3 of the algorithm are used

to determine the matrix A and M With t - t and
j+1 j+1~ j+1~ j

Xj+l(t ) = hl,j+ I +(tt+)h, 1

it follows from formulas (4.18), (4.17), (4.15), and (4.14), respectively, in

the proof of Lemma 8 that

hl,j+1 = h=j - 11 S h2,j+l h 2i - T2 sl I T1 > 0 (4.19)

or
h 'j+ I  = hlj , h2,j+ 1  = h2j - as 1 , a = min{o , o }> 0 (4.20)

or

hl1j+ I = hlj h2j+ I  = h.. (4.21)

Each vector (hlj, h2j) is uniquely determined by a submatrix Aj of A.

Thus there are only finitely many different vectors (hlj, h2j )

First assume that (hl'j+ I, h2,j+l) is given by (4.19). In this case

sCsI = 0 and, therefore, Cs I = 0 . Hence it follows from

-s (c+tjq) = sCxl(tj) + siA vj(tj): (vj(tj))l = 0g1j), =

and the equalities

Chlj , (t-tj)Ch2j + A jj + (t- tj)Aj g2 j =-(c+tjq) - (t-tj)q (4.22)

that

- q's, = q9j Aj Sl = g~j ej = (g2j)l < 0

Therefore, we have

qh!,j+1 = q ' h l j  1 i s , < (3'h0
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This implies that (hl~~ h h2,j~) is determined by (4.19) for at most

finitely many j

Next suppose that h2,j~l is given by formula (4.20). Then s C s1 > 0

and it follows from (4.22) that

-q's 1 - h jC S, = g~ Aj s I=' (g2j)l < 0

With Q(h2j) =q'h 2j +-7 h ij C h2j we have, therefore,
2

Q~h= Q(h 2j) - a(q'sl+hjjCs1)+ s- sC s,

= Q(h2~ + ag) 1 + a.s~s

Because (g2j)l < 0 , we have

+~2) 2- s'Cs1 <0 for 0<a 5(2~
c'(92j- si C Si

By (4.16) S, -sCs, w .Furthermore,

= min (g2j)l t } 0

Thus Q(h2,j+l) < Q(h29 . In conjunction with the previous results this implies

that h2,+ is determined by (4.20) for at most finitely many i

In order to complete the proof of the lemma it suffices, therefore, to show that

for at most finitely many consecutive indices j we have

h2,j+1 = h 2i (4.23)

It follows immediately from Step 3.1 and Step 4.1 that for every J with

h h2  there is a largest integer J such that

h h2  , jj,+,

and

ak span {ai i E J (xJ*)



where k is the index determined in Step 1.1 of the algorithm. Define the

set I of integers in such a way that i E I if and only if

a' x](t) = (b)i + tq(p)i

and

ai span { a Ii E J(x3)

Furthermore, define

I { i i E J(x 3 ) , (g13 ), j :0 with i

Set

d = q +C h

and consider the minimization problem

{ a t h = (p) i E J(xj) - I (min fd'h I I ' (4.24)

h ai  h + Xi = (p)i , ,i E U I

We apply the simplex-method with Bland's (11 minimum index rule to this

problem. An initial basic feasible solution is given by

h = h2  , = 0, i E I

For any d E I let s be such that

at s 0 i E J(x3 ) , (ai '- (4.25)
a's 1.

V) V

Substituting h X ; into the objective function we observe that >, is a

candidate for a basic variable if
- d' - (q' + h 3C)s < 0

V

Replacing j with j in (4.22) and using (4.25) we obtain

(q' + h2jC) = ) *

J LJv

This implies that X, will become a basic variable, where 1 is the same index

as the one determined in Step 1.2 of the algorithm. Thus s. = S, as defined by
Step 3.1 of the algorithm.
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A basic variable i  is a candidate for becomina a nonbasic variable if
- a. s, > 0 . If, for all i E I

-a s I  0 or Xi >

1 1 1

then the new basic solution is different from h' If, for some i E i

-a i >0 and Xi = 0

then i E 14 and X will become a nonbasic variable, where k is the

index determined in 3.1 of the algorithm

Thus every iteration of the algorithm such that j > j + I and h?,j+ I =h2j

is equivalent with an iteration of the simplex method applied to (4.24). By

Bland's rule this implies that there are at most finitely many consecutive j

such that (4.23) holds.

Using the above results we can now establish the main theorem.

Theorem

The algorithm determines a finite number of parameter values to ,t I ....

and vectors hlj , h 2 j. ,,,-I , such that

i) t = t 0 _ t :5 t1

ii) For j=0,1,...,\-1 ,

xj(t) = hlj + (t-tj)h2j is an optimal solution to the problem

(2.1) for all t with t. <. t < tj+I *

iii) Either t\, t or (2.1) has no optimal solution for any t > t

Proof:

It follows from Lemma 7 through 9 that, for every j , with tj = tj+I  there

is some j, > j  such that

t t = ... = t j < tjl + 1 (4.26)

Furthermore, for every j

xi(t) = h1. + (t- tj)h,

- 33-
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is uniquely determined by the matrix A whose columns are the gradients
of the primary active constraints. Since by the definition of tj+ I the

vector x1 (t) is not an optimal solution to (2.1) for any t > tj+ 1  it

follows from (4.26) and the fact that there are only finitely many different

submatrices A'. of A' that the algorithm terminates with some t . If

t < , termination occurs either with Step 2 or with Step 3 of the

algorithm in which case Lemma 6 asserts that the given problem has no optimal

solution for any t > t

References

[11 Bland, G.R. (1977). ',ew Linite pivoting rules for the simplex method.

MIath. ?per. Res. 2, pp. 103-107.

[21 Mangasarian, 0. L. (1969). Nonlinear Programming. McGraw-Hill, New York.

[3] Ritter, K. (1962).Ein Verfahren zur Lisung parameter-abh~nqiger, nicht-

linearer Mlaximum-Probleme. llnternehmensforschuna 6, pp. 149-166.

- 34 -



SECURITY CLASSIFICATION OF THIS PAGE (Whon Date EInteredj
PAGE READ INSTRUCTIONS

REPORT DOCUMENTATION BEFORE COMPLETING FORM

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBE-R

4. TITLE (and Subtitle) 5. TYPE OF REPORT A PERIOD COVERED

Summary Report - no specific
On Parametric Linear and Quadratic Programming reporting period
Problems G. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(&)

Klaus Ritter DAAG29-80-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKAREA S WORK UN1T NUMBERS

Mathematics Research Center, University of Work Unit Number 5 -

610 Walnut Street Wisconsin

Madison, Wtisconsin 53706 Operations Research
It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office March 1981
P.O. Box 12211 13,. NUMBER OF PAGES

Research Triangle Park, North Carolina 27709 34
14. MONITORING . GENCY NAME & ADDRESS(I, different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
ISa. DECL ASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

Ill. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it necessary mid Identify by block number)

Linear programming, Quadratic programming, Parametric programming

20. ARiTRACT (Continue on reverse ide If necessary and identify by block number)

An algorithm is described for determining the optimal solution of para-
metric linear and quadratic programming problems as an explicit piecewise linear
function of the parameter. Each linear function is uniquely determined by an
appropriate subset of active constraints. For every critical value of the
parameter a new subset has to be determined. A simple rule is given for adding
and deleting constraints from this subset.

DD I 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (%hen Data Entered)



I


